
Journal o f  Thermal Analysis, Vol. 33 (1988) 271-278 

APPLICATION OF NUMERICAL METHODS TO SOLVE NONLINEAR 
INVERSE PROBLEMS IN CALORIMETRY 
OF HARD MATERIALS 
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A method  is suggested for numerical determination of  heat capacity as a function of  temper- 
ature using the data on nonstat ionary experiments. This is based on the solution of the inverse 
problem in the overdefined formulation, with allowance for the temperature distribution inside 
the solid. The algorithm developed for the solution of  the problem allows determination of  the 
heat  capacity both in case of a material with a known thermal conductivity,  and in the case when 
the thermal conductivity of  the material is unknown and should be determined simultaneously 
with the heat capacity. The suggested method  of  numerical solution for the coefficient-type 
inverse problem of  nonlinear thermal conductivity may also be of  use in interpretations o f  the data 
of. thermal analysis. 

In determining the heat capacities of hard materials by nonstationary 
methods, which are widely employed due to the convenience of applying a 
computer (in contrast to stationary methods), one is confronted with the 
problem of a nonuniform temperature distribution in a solid; this cannot be 
taken into account correctly by analytical means in the general case. Dif- 
ferent methods of introducing "basic" and "mean volume" temperature as 
references for the measurement results [1 ] are not theoretically validated, 
and their successful application depends to a large extent on the experience 
and intuition of the experimenter. This question can be clarified if the 
inverse problem is solved in the extremal formulation by means of numerical 
methods [2, 3]. 

The present paper suggests a method for numerical identification of the 
heat capacity as a function of temperature; it is based on the solution of the 
inverse problem in the overdefined formulation, with allowance for the 
temperature distribution inside the solid. The algorithm developed for the 
solution of this problem can be used both in the case of a material 
with known thermal conductivity and in the case when the thermal con- 
ductivity of the material is unknown and should be determined simul- 
taneously with the heat capacity. The suggested method of numerical 
solution for the coefficient-type inverse problem of nonlinear thermal con- 
ductivity may also be of use in interpretations of the data of thermal analysis. 

John Wiley & Sons, Limited, Chichester 
Akaddmiai Kiad6, Budapest 



272 GRUZDEV,  KOVALENKO:  APPLICATION OF NUMERICAL METHODS 

To determine the volumetric heat capacity for specimens of canonical 
shape (a plate for n = 0, or a cylinder for n ~ 1 ), the following formulation 
of the problem is used with the known boundary conditions: 

0(0, t) = 01 (t), O(1,t) = 02 (t) (1) 

O0 (0, t ) = 0 ,  X OO Ox ~ x  (1,t) ~----o (t) (2) 

for the equation of thermal conductivity: 

c ( o )  a o  _ x-,, a x" x(o) a_oo (3) 
0t Ox Ox 

with the initial condition: 

O(x,O) = Oo (x)  = 0 (4) 

to find the heat capacity satisfying the inequality: 

c ( o )  > 0 (5) 

If X(d) is also to be determined, then. a condition similar to (5) is at least 
known for it: 

X(O) > 0 (6) 

In Eqs (1-3)  all the values are considered to be appropriately, dimension- 
'less (normalized): 0 is the dimensionless temperature, x is the coordinate, t 
is the time, X is the thermal conductivity, C is the heat capacity (dimensional 
volumetric heat capacity = Cdtm = cp, where c is the specific heat capacity 
and P is the density), and o is the specific heat flux into the specimen. 

The function C(0) is found by the successive interval method (Fig. 1) in 
the parameter form: 

n c 
Ck (O) = g  (2 C~ (o--dk) i-1 ) (7) 

\ ira. 1 

Having determined the parameters of C~ for the k-th interval, we proceed 
to the (k + 1)-th interval. In Eq. (7), O k is the temperature corresponding to 

J. Thermal Anal. 33, 1988 



GRUZDEV, KOX~ S.LENKO: APPLICATION OF NUMERICAL METHODS 273 

the beginning of  the k-th time interval (see Fig. 1), and g(S) is the functional 
conversion providing an account of a priori conditions for C(O). In particular, 
the positive condition (5) is taken into account by the choice g(S) exp (S). If 
~(0) is to be determined in addition to C(0), it is also represented as 

nk 
~,k ( 0 )  -~- g ( ~  ~./k ( o _ 0 k ) i - 1 )  (8)  

i=1 

Fig. I 
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Successive interval parameterization of desired dependences. 

Proceeding to the extremal formulation of the inverse problem, we shall 
find the parameters C~/ from the condition of  the minimum for caloric 
mismatch: 

tk+ l 1 k Y[C 4 c ( 0 ) 1 =  ~ f [ f x  n c  k 30 
tk o a t  

dx - o(t)] 2 dt -+ inf C/g (9) 

The minimized functional is obtained from the balance equation for the 
total amount  of heat. In calculations of the values Y as d(x, t), the solution 
of  the first boundary-value: problem (3), (1) with the initial condition 
obtained for the previous, (k-1) - th  interval is taken: 

0 0 (X) = O ( x , t  k ;  C k - l )  (10) 

The appropriate method of minimization is the method of  conjugate 
gradients [2], in which it is necessary to know the values of gradients at the 
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points of minimizing sequence. To calculate the gradient components,  we 
shall apply the conjugate problem method [4]. According to this method:  

3 y  tk+l 1 ~ 0  ~C 
- - - -  f f x n  ~o - - d x d t  (11) 
OC k tlc o Ot ac~ 

where ~0is the solution of  the boundary-value problem conjugated to Eq. (9): 

xn i) ~O - -  a k ~ x n ~ ~0 

~ ~x ~x 

~p(x,O)--~ 0; ~(0,r) = 0, ~O(I,T) ~---B(tk+I--T) (12) 

In Eqs (12), r = t g + l - t  is an inverse time, B ( t )  is the caloric mismatch 
contained in brackets in Eq. (.9), and a g = X/C g is the thermal diffusivity. 
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Fig. 2 Determination of heat capacity for a cylindrical specimen (n = 1): 1 - exact values, 2 - re- 
constructed heat capacity for exactly known thermal conductivity X = ~% - (1+5"10-4 O), 3 - 
reconstructed heat capacity for incorrect thermal conductivity ~. = 1.1 3.o. 

Figure 2 shows the results of solving the methodical problem on C(O) 
reconstruction by means of a comput.er. The form of C(O) was set similar to 
that usually used for the effective heat capacity on the melting, for example, 
of  mixtures of  paraffins. It is seen that, even if the thermal conductivity is 
known only with appreciable error, the heat capacity of essentially nonlinear 
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form is determined reasonably well (error near maximum ~5-6%, in sections 
adjoining the peak region -~ 2-3%). In the numerical solution of  the inverse 
problem with the stated algorithm, the logarithm of  the effective volumetric 
heat capacity at intervals was approximated by a cubic parabola (nc = 4), 
with joining carded out with the value of the heat capacity (this decreases the 
number of desired parameters by one) at the end of the intervals. The value 
of  the temperature-time interval was chosen from the condition: 

ok+ 1 __ o k  ~___ "0~ ~ const 

The algorithm for the simultaneous determinat ion of C(O)and X(O), if 
the latter is unknown,  is based on a weak sensitivity of  functional Y to the 
values of the thermal conductivity (with an error in the thermal conductivity 
up to 50%, the heat capacity is determined from Eq. (9) with an error of  not 
more than ~ 10-12%). The thermal conductivity represented by parameters 
in accordance with Eq. (8) found from the functional minimization: 

1 tk+l 1 x-nq d x - ( 0 1 - 0 2 ) ]  2 dt-~infX/k (13) 
f [ofX-  - 
t k 

In Eq. (13), q(x, t)  ---- - x  n X a0 is the dimensionless specific heat flux in 
ax 

the solid; simultaneously with the temperature field, this is found from the 
solution of  the second boundary-value problem for a set of  equations: 

xn ck aO aq xn Xg aO - - +  - - 0 ,  + q = O  (14) 
at ax ax 

with boundary conditions (2) and the initial condition: 

0 o (X) -~- O(X , t  k ; C k-1 , )k k - l )  (15) 

The values of the components for the functional gradient are calculated 
by the conjugate problem method using the equations: 

a Z  tk+l 1 aVB a~  

a~ki - -  ftk fo q~ ax - - a x  k dx dt (16) 

xn a~o a k axlt ~ 0, xn a~o ~ ~ o, 
aT ax ax 
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~o(x,O) = O; ~(O,r) ---A ( tk+  1 -r)/X(O(O, tk+i -r)) ,  

,I,(1 ,r) = A (tk+l -r)/X(O(1 ,tk+ 1 --r))  

( 1 7 )  

In conjugate problem (17), r - -  tk+l--t is the inverse time, and A ( t ) i s  
the mismatch contained in brackets in Eq. (13). The numerically differential 
analogues of problems (14), (2), (15) and (17) are solved by the flow run [5]. 
The minimization of  functionals Y and Z is performed in turn until the 
revision of the thermal conductivity on successive iteration results in the 
improved result of the heat capacity determination. The heat capacity and 
thermal conductivity are then reconstructed simultaneously. The solution of 
the model problems for the determination of C(O) and X(O) shows the good 
efficiency of  algorithm (Figs 3 and 4). 
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Fig. 3 Simultaneous determination of  heat  capacity and thermal conductivity for a plane specimen 
(n = 0): 1 - exact  vatues, 2 - result of  determination with smoo th  input data, 3 - solution of  
inverse problem with input data perturbed by first method.  
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Fig. 4 Solution of inverse problem for a cylindrical specimen: 1 - exact values, 2 - with smooth  data, 
3 - with data perturbed by first method,  4 - with data perturbed by second method.  

Since the measurements of temperature are usually carried out with an 
error, special numerical experiments to verify the stability of the algorithm 
operation have been performed. The perturbations into smooth boundary 
data 01 (t) and 02 (t) were introduced by two methods, simulating either a 
limitation on the sensitivity of the measuring instruments or random noise: 
1) by discarding the digits to the first decimal place; 2) by adding a normally 
distributed random value with zero expected value. The computational ex- 
periments indicated the stability of the algorithm operation, with the error 
values of the input data close to the real ones (Figs 3 and 4). 
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Thus, the suggested algorithm can be applied for the experimental de- 
termination of the heat capacity (in the intervals of  melting of the multi- 
component  mixtures, near the Debye temperature for crystalline materials, 
etc.) both for the case of  a known thermal conductivity,  and for the case 
when the thermal conductivitY is unknown and should be determined 
simultaneously with the heat capacity. 
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Zusammenfassung - Die vorgeschlagene Methode zur Bestimmung der Temperaturabhangigkeit der 
WLrrnekapazit~it aus den Daten eines nichtstation~iren Versuchs griJndet sich auf die L6sung der um- 
gekehrten Aufgabe in einer iiberbestimmten Aufstellung, sie erlaubt, die Temperaturverteilung inner- 
halb der festen Probe in Betracht zu ziehen. Der ausgearbeitete L6sungsalgorithmus gestattet, die 
W~rrnekapazit~it zu bestimmen, und zwar sowohl, wenn die W~irmeleitf~ihigkeit des Materials bekannt 
ist, als auch, wenn fie unbekannt ist und gleichzeitig mit der W~irmekapazit~it bestimmt werden soil. 
Die vorgeschlagene Methode der numerischen L6sung des Problems der inversen Koeffizienten bei der 
nichtlinearen Warmeleitfahigkeit kann auch bei der Auswertung von Daten der thermischen Analyse 

verwendet werden. 

P E 3 I O M E  - -  Flpe~o~eH MeTo~I qHCYIeHHoro onpe~IeneH~n TeMnepaTypHo~! 3aBHCHMOCTH TennoeMKOCTH 
rio ~IaHHblM HecTaIIHOHapHoro 3KcHepHMeHTa, OCHOBaHHbUTI Ha pemeH~H o~paTHO~I 3a~aqH B nepeonpe- 
~ieneHHofi nOCTaHoBKe H no3Bon~IottI~ yYecTb pacnpe~IeneHHe TeMnepaTypbl BHyTpH Tena. Pa3pa6oTaH- 
HbII~! a.rlropHTM pemeHH~ 3a~laqH no3Bon~IeT onpe~Ie~aTb TerLrIOeMKOCTb HaK B cny~ae H3BeCTHOITI TerIyIO- 
npoBo~HOCTH MaTepHasta, TaK H B cnyyae, Kor~Ia TerUIOHpOBO~IHOCTb MaTepHaJIa He H3BeCTHa H no~ne- 
~gh'T onpe/leneHHtO BMeCTe C Ter~oeMKOCTbm. rlpejlno)KeHHS~fi MeTOJ$ ~cne~rHoro peLUeHHH I(O3f~pH- 
ilHeHTHO~ o6paTHOH 3a~aqH HenHHe~Ho~I TeIzIIorlpoBO~HOCTH MoH<eT 6bITb none3eH TaK~Ke I1pH pacmHqb- 
pOBKe ~ M b ~  TepMHqecKoro aHa~iH3a. 
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